

DOE's EGS Program Review

Prediction and Control of Attributes of Induced Fractures in EGS

Jeff Roberts and Russ Detwiler

LLNL

925-422-7108/925-423-1057

jjr@llnl.gov

Project Objective

- Maintaining or increasing fracture permeability is critical to effective EGS implementation.
- Mechanisms that lead to alterations of fracture permeability include:
 - Mechanical deformation
 - Geochemical alteration

Initial objectives

- We are integrating laboratory experiments and model development lead to:
 - Improve understanding of coupled processes in fractured rocks under reservoir conditions
 - Develop scalable tools for predicting the impact of coupled processes on fracture permeability evolution

EGS Problem

- Effective operation of EGS reservoirs requires improved tools for predicting the effect of coupled chemical / mechanical / thermal stresses on the long term evolution of fracture permeabilities.
- Such tools can directly aid in:
 - Development of operation plans to extend a well's lifetime
 - Maximizing net thermal output by maintaining / increasing fracture surface area.
 - Assessing the potential for developing / maintaining adequate fracture permeability in prospective EGS formations.
- Development of effective computational tools requires experimental data to test the models.
- We measure permeability evolution in EGS rocks at reservoir conditions under carefully controlled conditions to:
 - 1) determine how the physical and chemical properties of rocks and fluids control the permeability evolution of induced fractures in geothermal fields;
 - 2) suggest optimal strategies for sustaining permeability; and
 - 3) apply this knowledge in support of DOE EGS field experiments.
- Efforts support the Desert Peak East EGS project and include direct collaboration with ORMAT and GeothermEx.
- Because the conceptual and numerical models developed explicitly incorporate the relevant mechanisms, they are applicable to any EGS effort provided adequate knowledge of the rock and fluid properties.

Integrated experimental/computational study to develop enhanced models of mechanisms that alter fracture transmissivity in EGS Systems

Input from industry collaborators

Pre- and post-flow characterization

Geochemical modeling

Ongoing: Thermal and mechanical modeling

Hydrological modeling

- Quartz Monzonite major mineralogy:
 - Plagioclase 44%
 - Potassium feldspar 23%
 - Quartz 7%
 - Mica 3%

- Planar fractures with one roughened surface:
 - Reproducible aperture field statistics
 - Realistic surface mineralogy
 - Insensitive to small registration errors when reconstructing aperture fields from surface measurements

Fracture surfaces analyzed before and after flow experiments using:

Surface profilometry

x-y resolution: 30 μm,

z resolution: 5 µm

Surface profiles allow reconstruction of initial / final fracture aperture fields for input into models

SEM

SEM images provide detailed measurement of surface characteristics / mineralogy

- Experiments to date use two fluids with different Si-saturation states:
 - Far-from-SiO₂ saturation fluid
 (Na, Cl) e.g., near injection well
 - Near SiO₂ saturation fluid (Na, Ca, K, Cl, SiO₂) - e.g., far from injection well
- Flow experiments approximate reservoir conditions:
 - Temperature: 167 C
 - Confining pressure: 800 psi (5.52 MPa)
 - Pore pressure: 250 psi (1.73 MPa)

- Long term flow experiments at reservoir pressure / temperature:
 - Far-from-SiO₂ saturation fluid
 - Rock surfaces experience net dissolution
 - Slow decrease in b_{eff} may be due to dissolution of contacts between surfaces
 - Near SiO₂ saturation fluid
 - Surfaces experience net precipitation
 - This leads to a much faster reduction in b_{eff}

- 65 days @ 0.02 0.01 mL/min
 removed ~20 ?m
- Near-saturation-injectate
 - 37 days @ 0.02 mL/min
 added ~4 ?m

- Batch geochemical model overestimates change in fracture aperture for both cases.
- May be due to localized variability due to
 - Flow channeling
 - Mineral heterogeneity

July 18, 2006

Marriott Hotel Golden, CO

Before

After

42 mm

July 18, 2006

- Measured aperture fields (far from saturation):
 - Aperture growth localized near inflow not uniform over surfaces
 - Significant dissolution along cemented cross-cutting fracture
 - Mean aperture ~30 μm (~40%) larger after flow, agreeing with geochemical model
- SEM images:
 - Variability in surface mineralogy leads to localized pitting
- Local features are not predicted by the batch model or 1D reactive transport models but may play important role in fracture evolution.

July 18, 2006

- Flow simulations in the measured aperture fields demonstrate enhanced channeling caused by dissolution.
- Despite 40% increase in measured mean aperture, simulations predict negligible change in hydraulic aperture.
- Remaining discrepancy between measured and simulated permeabilities likely due to measurement error and depth-averaging assumptions.
- Predicting long-term evolution of fracture reservoir permeabilities will require incorporating constitutive relationships that can effectively represent the role of localized mechanisms.

July 18, 2006

- Adequately representing the influence of flow channeling on dissolution / precipitation processes requires 2D reactive transport modeling.
- Ongoing efforts involve solving 1D reactive transport along evolving streamtubes predicted by the flow model.
- This effort leverages current LLNL research (BES, LDRD) on coupled reactive transport / mechanical deformation in variable aperture fractures.
- Recent development of parallelized discrete fracture network reactive transport model will allow us to extrapolate experimental results to larger scales.

- Thermal stress experiments are ongoing.
- Injection of cold water leads to a rapid drop in effluent temperature.
- Moderate increase in permeability observed for this test.
- Future experiments aimed at evaluating the relative magnitude of permeability alterations due to thermal effects and geochemical effects.

Conclusion

- Ongoing experiments provide a controlled data set for evaluating scalable computational models of chemical / mechanical mechanisms that lead to fracture alteration and meet our FY06 objectives.
- Recently initiated thermal stress experiments (FY07 objectives) will provide comparison between thermal effects and previously measured geochemical effects.
- We are developing mechanistic models that will allow us to extend results to a broader range of parameter space than is experimentally feasible.
- These efforts will lead to currently unavailable constitutive relationships for these coupled processes in fractured rocks that can be incorporated into large scale reservoir models.